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Abstract
We present a many-body computational technique for simulating interacting
electrons in non-parabolic semiconductor bands. The technique uses an
imaginary time propagator for a non-parabolic electron band that is described
by an energy dependent effective mass. This derivation exploits a mathematical
analogy between the kinetic energy with effective mass corrected to first order in
energy and the relativistic kinetic energy. The propagator can be used in ground
state and finite temperature quantum Monte Carlo (QMC) algorithms. We give
a demonstration of this path integral QMC technique applied to interacting
electrons in a self-assembled InGaAs quantum dot.

1. Introduction

The accurate simulation of electron and hole quasiparticles in semiconductor nanostructures
is an important challenge in science and engineering. Two demands, which are often in
conflict, are the need to accurately simulate interacting quantum particles and the need to
accurately represent the individual quasiparticles [1]. When careful treatment of interactions
is important, simplified models such as single-band effective mass models allow the use of
analytic techniques [2–4] or quantum Monte Carlo (QMC) simulations [1, 5–8]. When a
high quality description of material-specific quasiparticle properties is needed, techniques
such as k · p theory [9], empirical pseudopotentials [10], and tight-binding models [11]
allow accurate single-particle simulations. To add many-body correlations to these more
complicated quasi-particle models, a common approach is a multi-determinant expansion of
the few-body wavefunction [12–16]. Such expansions are often underconverged [1], and the
multi-determinant techniques scale poorly with the number of quasiparticles.

In this work, we derive a technique for extending the capabilities of quantum Monte Carlo
techniques. Band non-parabolicity is often the leading correction to single-band effective
mass models of electrons, especially in small bandgap semiconductors [17]. We show that a
propagator for electrons with non-parabolic bands can be derived for use in quantum Monte
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Carlo studies. We discuss its application in both ground state and finite temperature QMC
algorithms. As a demonstration, we use the techniques to simulate interacting electrons in a
self-assembled InGaAs/GaAs quantum dot.

2. Theory: a non-parabolic propagator

In the simplest effective mass formalism, electrons are assigned an effective mass that is the
inverse of the second derivative of the energy, m∗ = (∂2εk/∂k2)−1, evaluated at the conduction
band minimum. For low energy electrons, this single-band approximation is appropriate for
many semiconductors. For example, the conduction band in GaAs has a singly degenerate
band minimum at the gamma point, with m∗ ≈ 0.067me. For higher energy electrons, the
non-parabolicity of the conduction band must be taken into account. One way to accomplish
this is by treating the electron effective mass as an energy dependent quantity. For example,
the conduction band minimum in GaAs is better described by ε(k) = h̄2k2/2m∗(ε), where

m∗(ε) = m∗
0(1 + αε), (1)

where α ≈ 0.6557 eV−1 is the non-parabolicity parameter, and m∗
0 ≡ m∗(0) refers to the mass

when ε = 0. From the two-band Kane model [17], the energy scale for non-parabolicity is
set by the bandgap, Egap, as α = 1/Egap. This expansion can be continued to higher orders
in energy. In this paper, we consider only the first-order energy corrections to the effective
mass and derive a quantum Monte Carlo technique for the non-parabolic band. Solving for
the energy, one finds the standard expression

ε(k) = 1

2α

√
1 +

2αh̄2k2

m∗
0

− 1

2α
. (2)

This first-order non-parabolic correction is equivalent to fitting the conduction band minimum
to a hyperbola, rather than a parabola.

In QMC algorithms, the kinetic energy enters the simulations through the propagator
G(r, r′; τ ) = 〈r|e−τ H |r′〉. This propagator is most easily evaluated by expanding in a plane
wave basis,

G(r, r′; τ ) = 1

(2π)3

∫
d3k exp[ik · (r − r′)] exp[−τε(|k|)]

= exp( τ
2α

)

2π2r

∫ ∞

0
exp

[
− τ

2α

(
1 +

2αh̄2k2

m∗
0

)1/2]
k sin kr dk, (3)

where r = |r − r′|. This integral also occurs in the evaluation of the real-space propagator
of a relativistic free particle [18]. In fact, the hyperbolic dispersion relation in equation (2) is
mathematically analogous to the kinetic energy of a relativistic particle. In closed form, the
propagator is

G(r, r′; τ ) = exp( τ
2α

)τ

32π2αz

(
2m∗

0

h̄2α

)3/2

K2(z), (4)

where K2 is a modified Bessel function of the second kind [19] and

z = τ

2α

(
1 +

2m∗
0α|r − r′|2

h̄2τ 2

)1/2

. (5)

When τ becomes large enough, states with small momenta make a dominate contribution to
the propagator. In this large τ limit the propagator should coincide with the usual Gaussian
propagator for parabolic bands. To verify this limit, expand z for large τ � m∗

0|r −r′|2/2h̄2τ ,

z ≈ τ

2α
+

m∗
0|r − r′|2

2h̄2τ
. (6)
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Figure 1. The kinetic action for propagating an electron in GaAs (m∗ = 0.067) for τ = 8 Ha−1

in imaginary time. The solid line includes band non-parabolicity with α = 0.6557 eV−1, while
the dashed line shows the parabolic action. The inset shows the scale functions for sampling these
propagators from a 3D Gaussian variate χ, defined in equation (9).

Using the asymptotic form of the modified Bessel functions, Kν(z) ≈ √
π/2z exp(−z), we

find the parabolic band limit,

G0(r, r′; τ ) =
(

m∗
0

2π h̄2τ

)3/2

exp

(
−m∗

0|r − r′|2
2h̄2τ

)
. (7)

Note that this limit requires two conditions: the distance |r − r′| must be small enough that
τ � m∗

0|r − r′|2/2h̄2τ is satisfied, and τ � 2α.
In figure 1 we compare the parabolic band propagator, G0, and the hyperbolic band

propagator, G. We have plotted the action, S = − ln G, for a time step appropriate for QMC
simulations of nanostructures, τ = 8 Ha−1 = 0.3 eV−1. For the parabolic band propagator,
the action is also parabolic, leading to a Gaussian form for G0. For the hyperbolic band
propagator, we see that the action is diminished at both small and large distances. This leads to
a propagator, G(r, r′; τ ), that, compared to a Gaussian, has a narrower central peak and longer,
exponentially decaying tails. For both the parabolic and hyperbolic bands, the normalization
of the propagator is unity, and the root mean square width, σ = √〈|r − r′|2〉, is equal to
h̄
√

τ/m∗
0.

Interactions can be included in the usual Trotter expansion [20]. Writing the Hamiltonian
as H = T + V , where T is the kinetic energy operator for non-parabolic bands and V is
the potential energy operator for external confining potentials and for repulsive Coulomb
interactions between particles, the Trotter expansion is

exp(−βH) = lim
M→∞

∑
M

exp(−τT ) exp(−τV), (8)

where τ = β/M . Explicit use of this formula is known as the primitive approximation [21].
Note that the Trotter expansion naturally introduces non-parabolic effects: if the potential is
weak or slowly varying, several sequential kinetic propagators effectively multiply together
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to approximate a propagator with a larger effective time step, approaching the parabolic band
limit. But if the potential is strong and varies over short times, then the effects of the short time
non-parabolic propagators are coupled to the confining potential and are not approximated by
the parabolic propagator.

In some cases, such as path integral simulations, we want a more accurate propagator
so that we can use a larger time step τ . The action contains free particle terms,
S0(r, r′; τ ) = −log G0(r, r′; τ ), and additional terms arising from the potential. In the
primitive approximation, the action due to a potential is simply τV (R). For pairwise
interactions, a useful improvement is the pair approximation [21], obtained from a solution of
the interacting two-particle propagator. (Note that, with attractive Coulomb interactions, the
Trotter expansion does not hold as written in equation (8), and the pair approximation is needed
to maintain a finite time step.) In our simulations, we tabulated the pair Coulomb propagator
on a radial grid with a fourth-order polynomial expansion for the off-diagonal coordinate [21],
using the analytic expansions of Vieillefosse [22]. We make an additional approximation of
using the pair Coulomb density matrix as calculated with parabolic kinetic energy, even when
simulating non-parabolic bands. For the external confining potentials we just use the primitive
approximation.

3. Simulation technique

Real-space QMC techniques can be used to simulate correlated electrons in semiconductor
nanostructures. For ground state simulations, diffusion QMC propagates the electrons along
random walks that project out the ground state energy of the system. For finite temperature,
path integral QMC samples the quantum partition function represented as a Feynman path
integral. We can use this hyperbolic band propagator with both types of QMC algorithms, as
discussed in this section.

3.1. Diffusion quantum Monte Carlo

This paper is focused on finite temperature path integral simulations. To introduce a technique
for sampling the hyperbolic band propagator, though, the diffusion QMC algorithm without
importance sampling is the simplest case. Here we present a brief description of this simple
ground state algorithm, and give some references to related calculations for readers who are
interested in implementing more practical, importance-sampled ground state algorithms.

In diffusion QMC, the electrons are propagated in a branching random walk [23]. In the
simplest formulation, one moves walkers with the free particle propagator, then weights the
walkers with a factor e−τ V (R). To sample the hyperbolic band propagator, one can tabulate a
function fG(r) defined by

(2π)−3/2
∫ r

0
exp

(
−r2

2

)
4πr2 dr =

∫ fG (r)

0
G(r; τ )4πr2 dr. (9)

From a vector χ drawn from a Gaussian with unit variance, the vector∆r = χ fG(|χ|) samples
the hyperbolic band propagator. The function fG(r) for a typical GaAs simulation is plotted
in the inset to figure 1.

The efficiency and stability of diffusion QMC is often improved by importance sampling
with a trial wavefunction 	T. With parabolic bands, this leads to a drifted random walk and
weighting of walkers based on the trial wavefunction [23]. The hyperbolic band propagator
can complicate importance sampling. In this paper, we do not consider importance-sampled
diffusion QMC, but instead focus on the path integral QMC method, described next. Some
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issues for ground state QMC calculations with this hyperbolic band propagator have been dealt
with in relativistic simulations of nuclear models [18, 24, 25].

3.2. Path integral quantum Monte Carlo

The thermal density matrix may be written as a sum over paths,

ρ(R,R′; τ ) =
∫

DR(t) exp(−S[R(t)]), (10)

where the path R(t) starts at R(0) = R′ and ends at R(β) = R. For numerical evaluation,
the path is discretized into many short intervals with time step τ , and the action is evaluated for
each short interval. Monte Carlo integration may then be used to sample the path integral in
order to calculate quantum and thermal averages. For more details of the path integral QMC
technique, see the review article by Ceperley [21].

The hyperbolic band propagator makes a contribution to the action,

S(r, r′; τ ) = − τ

2α
+ ln(32π2αz/τ) − 3

2
ln

(
2m∗

h̄2α

)
− ln K2(z). (11)

The estimation of energy involves a tau derivative [21],

Ṡ(r, r′; τ ) = − 1

2α
− 1

τ
+

τ

2α2z2
+

τ

8α2z

K1(z) + K3(z)

K2(z)
. (12)

A key step in the Monte Carlo sampling of a new path configuration is the sampling
of a mid-point of a time interval [21]. A common strategy for interacting systems is to
use free particle sampling of a new path, with a multilevel rejection scheme for handling
interactions [21]. If a free particle is at point ri−1 at an earlier imaginary time −τ and is at a
point ri+1 at a later imaginary time τ , its current position r has the normalized distribution

P(ri ) = G(ri+1, ri ; τ )G(ri , ri−1; τ )/G(ri+1, ri−1; 2τ ). (13)

(Recall that the convolution of two Green functions is G(ri+1, ri−1; 2τ ) =∫
G(ri+1, ri ; τ )G(ri , ri−1; τ ), dri .) For large times τ � α, this is a product of two Gaussians,

which is a Gaussian centred between ri−1 and ri+1. At smaller times, this function is bimodal,
with peaks centred around ri−1 and ri+1.

To sample this joint probability distribution, we use a rejection technique. As an envelope,
we sample a point ri from a normalized sum of two distributions centred around the points
ri−1 and ri+1,

P2G(ri ) = [G(ri , ri−1; τ ) + G(ri , ri+1; τ )]/2. (14)

The point is accepted with probability cP(ri )/P2G(ri), where c is a constant that keeps this
probability less than or equal to one at all points. In practice, we find that c can be determined
by examining the point ri = ri−1. The rejection rate is very reasonable; typically a third of the
points are accepted. In our simulations, we have collected statistics on c and found it to have an
average of 0.32 with a sharp peak at a median value of 0.30. Small values of c that would cause
many rejections and dramatically slow down the simulation are extremely rare. For example,
in a random set of ten thousand values, the smallest value of c was slightly larger than 0.02.

4. Application: path integral simulation of a heteroepitaxial quantum dot

As a demonstration of the technique, we apply it to two electrons in an InGaAs/GaAs self-
assembled dot. The non-parabolic effects are significant in this system, and we can nominally
compare these calculations to our earlier pseudopotential calculations [26]. A disadvantage of



2568 J Shumway

Table 1. Energies for one and two electrons in an InGaAs dot, in eV, measured from the bulk
GaAs valence band edge. Pseudopotential calculations incorporate complete band structure and
are used to check our effective mass approximation (EMA) calculations with parabolic (α = 0)
and non-parabolic (α > 0) bands. The total energy of two particles includes small contribution
correlations and self-consistent interactions. We can see these small contributions by comparing
the total energy (row 4) to the perturbation theory (PT) total energy (row 3). The PT total energy
(row 3) for two electrons is twice the single-particle energy (row 1) plus the PT shift (row 2).

Plane wave EMA Path integrala EMA

Ne Quantity Pseudopotentialsb (α = 0) (α = E−1
gap) (α = 0) (α = E−1

gap)

1 Total energy 1.420 1.4289 1.4153 1.4293(1) 1.4143(3)
2 PT shift 0.021 0.021 0.023 0.023 0.025
2 PT total 2.861 2.879 2.854 2.8807(2) 2.8536(6)
2 Total energy — — — 2.8800(2) 2.8509(5)

a Statistical errors in the last digit of Monte Carlo integrations are shown in parentheses.
b Empirical pseudopotential calculation results from [26].

this choice is that the effect of electron–electron interactions are fairly trivial. In these small
quantum dots, correlation between two electrons is nearly insignificant relative to first-order
perturbative corrections [1]. Correlation does become important in single-dot spectroscopy [1],
but inclusion of holes in the calculations introduces other issues that we discuss in the
conclusion. Since our focus here is on the improved modelling of electron quasi-particles
in QMC simulations, we are content with studying the small-but-calculable effects of band
non-parabolicity on the interacting electron energies.

We have used finite temperature path integral QMC simulations for these tests. Taking a
low temperature, T = 0.001 Ha ≈ 32 K, the system is essentially in its ground state, since
the gap to the first excited state is approximately 40 meV [26]. Our motivation for using path
integrals for ground state properties is that the algorithm only requires the Hamiltonian: we do
not construct trial wavefunctions, but rather sample the density matrix directly. This is useful
for nanostructures when we may not know the order of orbital filling or how electrons prefer to
distribute themselves in an arrangement of several dots. These simple tests reported here are
a necessary step for introducing this hyperbolic band propagator into a larger research project
on semiconductor nanostructures [27].

As a test system, we have chosen a model from [26]. In that, a series of quantum dot
models with varying size and composition are compared with experimental measurements of
size, shape, composition, and photoluminescence spectra. For simplicity, we have chosen
one of these model dots: a uniform, conical dot, with the nominal alloy composition of
In0.5Ga0.5As, having a height of 3.5 nm with a 20 nm base and 16 nm top, and sitting on a
1.85 nm In0.3Ga0.7As wetting layer [26]. As in [26], we have calculated the strained band
offsets for electron confinement, using an atomistic valence force field model for the strain
calculations [28]. This procedure gives us an effective three-dimensional confining potential
to use in our hyperbolic band path integral QMC.

In table 1 we list the energies of one and two electrons from the pseudopotential calculations
of [26]. Using a constant effective mass of m∗ = 0.067 and a plane wave basis,we have checked
that energy in the effective mass approximation, as shown in columns 3 and 4 of table 1. (In
this study we have kept the mass independent of position for simplicity. As discussed in [29],
this approximation is justified because the strain, Ga incorporation, and even the band non-
parabolicity effects in the dot all raise the smaller InAs effective mass to a value much closer
to that of bulk GaAs. Note in particular that the smaller bandgap in the dot would increase
the non-parabolicity factor beyond the constant value that we are using, partially offsetting the
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smaller InGaAs effective mass in the dot.) With parabolic bands, the effective mass ground
state energy is 1.429 eV, and with non-parabolic bands this energy drops to 1.415 eV.

Next, we ran path integral QMC simulations for one and two electrons in the dot. For
one electron, we find that the parabolic and non-parabolic models give very close agreement
between the path integral simulation and the plane wave calculation, as summarized in table 1.
The plane wave and path integral QMC calculations agree to within 1 meV for both parabolic
and non-parabolic bands, giving us confidence in our non-parabolic QMC implementation. In
the second row of the table, we show Coulomb energy corrections within first-order perturbation
theory, using a dielectric constant ε = 13, and corresponding total energies from perturbation
theory are shown in the third row. The small differences in absolute values from the perturbative
corrections for different methods are probably due to differences in real-space integration
techniques. The fact that the pseudopotential Coulomb correction is smaller than the correction
obtained with the effective mass may also be due to incomplete convergence of the ‘linear
combination of bulk bands’ basis [30] used with the pseudopotential Hamiltonian [26].

The path integral simulations can directly solve this interacting two-particle system, as
shown in the bottom line of the table, using a pair approximation for the Coulomb interactions,
as discussed at the end of section 2. The improvements beyond first-order perturbation theory
in the path integral calculations for two electrons include both self-consistency corrections
and correlation. For the parabolic effective mass calculations, the change is small, about
−0.7 ± 0.3 meV. For non-parabolic effective mass calculations, the change is significantly
larger, about −2.7 ± 0.8 meV. This is the expected trend: the non-parabolicity softens up
the wavefunction, allowing larger self-consistent corrections and more correlation. This is
completely analogous to relativistic kinetic energy corrections in atomic physics. The effect
can also be understood from perturbation theory: the non-parabolicity significantly lowers the
energies of excited states, enhancing higher order perturbative corrections.

5. Conclusion

We have shown a method for including the effects of non-parabolic bands in QMC simulations
of semiconductor nanostructures. Tests on a InGaAs quantum dot show that the inclusion
of non-parabolicity brings the effective mass calculations into closer agreement with single-
electron energies as calculated using empirical pseudopotentials. While this demonstration
focused on two electrons, we note that the quantum Monte Carlo formalism can be extended
to many electrons with an additional fixed-node approximation [8]. The algorithmic
improvements that we have described here should have immediate applications to current QMC
simulations of self-assembled dots and enable more realistic simulations of two-dimensional
electron gases in real semiconductor heterostructures.

Future work will consider improvement in the simulation of hole states. For strained
heterostructures, such as the InGaAs quantum dot considered here, strain breaks the degeneracy
of the hole band. These strained holes are sometimes approximated with single-band
anisotropic effective masses [2]. In that case, the non-parabolic effects are accompanied
by mixing of other hole bands, so the technique described here is not applicable. Rather,
techniques that include degrees of freedom for the internal spin and band indices for holes will
be necessary to go beyond the parabolic mass approximation for holes.
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